基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对滚动轴承振动信号的故障信息难以准确获取问题,提出一种新的基于多层降噪处理的轴承故障特征提取方法.所提方法首先依据小波包变换原理处理原始轴承信号,消除噪声干扰;变换后的振动信号用经验模态分解方法处理可得若干个IMF分量,计算所得分量与变换所得信号间的互相关系数,并依据相关系数准则筛选有用分量完成振动信号的重构;再通过自相关方法剔除重构信号中的混叠干扰信号,实现振动信号的多层降噪;最后对去噪后的重构信号解调处理,获取信号包络谱图并分析,得到所需故障特征.试验结果表明该方法能够有效地消除原始信号中的干扰和噪声,分离出清晰的故障振动信号并获取有用的故障特征.
推荐文章
基于图像处理的滚动轴承故障特征提取研究
图像处理
滚动轴承
SDP
特征提取
基于ITD-KICA盲分离降噪的滚动轴承故障特征提取
滚动轴承
时间固有尺度分解(ITD)
核独立分量分析(KICA)
特征提取
基于MED-RSSD的滚动轴承早期故障特征提取
滚动轴承
故障诊断
最小熵反褶积
共振稀疏分解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多层降噪处理的轴承故障特征提取方法
来源期刊 机床与液压 学科
关键词 小波包变换 EMD 互相关系数 自相关去噪 特征提取
年,卷(期) 2021,(16) 所属期刊栏目 故障诊断与可靠性|FAULT DIAGNOSIS & RELIABILITY
研究方向 页码范围 174-179
页数 6页 分类号 TH133.3|TG506
字数 语种 中文
DOI 10.3969/j.issn.1001-3881.2021.16.036
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (109)
共引文献  (101)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(13)
  • 参考文献(1)
  • 二级参考文献(12)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(12)
  • 参考文献(1)
  • 二级参考文献(11)
2018(19)
  • 参考文献(2)
  • 二级参考文献(17)
2019(11)
  • 参考文献(8)
  • 二级参考文献(3)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小波包变换
EMD
互相关系数
自相关去噪
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机床与液压
半月刊
1001-3881
44-1259/TH
大16开
广州市黄埔区茅岗路828号
46-40
1973
chi
出版文献量(篇)
20801
总下载数(次)
44
总被引数(次)
104386
论文1v1指导