基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
滚动轴承是旋转机械的重要部件之一,针对滚动轴承故障诊断问题,提出了一种多尺度排列熵(MPE)与粒子群优化(PSO)的支持向量机(SVM)相结合的算法.利用MPE方法得到轴承故障信号的故障特征,并将其作为特征向量输入PSO-SVM模型中,使用凯斯西储大学轴承故障数据进行验证,发现该方法可以有效进行滚动轴承的故障识别.同时将该方法与多尺度排列熵结合传统的SVM方法以及使用网格搜索优化的SVM方法所得故障分类结果进行比较,发现该方法在滚动轴承故障诊断的时效性以及准确率方面具有一定的优越性.
推荐文章
基于ELMD与LS-SVM的滚动轴承故障诊断方法
ELMD
模式混淆
LS-SVM
滚动轴承
故障诊断
DBN与PSO-SVM的滚动轴承故障诊断
特征提取
深度信念网络
支持向量机
故障诊断
基于最小二乘映射和SVM的滚动轴承故障诊断
故障诊断
LSM
SVM
无量纲特征参量
基于改进HHT能量熵和SVM的滚动轴承故障诊断
希尔伯特-黄变换
能量熵
支持向量机
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MPE与PSO-SVM的滚动轴承故障诊断
来源期刊 电子测量技术 学科 工学
关键词 多尺度排列熵 粒子群优化 支持向量机 滚动轴承
年,卷(期) 2021,(21) 所属期刊栏目 研究与设计|Research and Design
研究方向 页码范围 44-48
页数 5页 分类号 TH133.33+1|TP181
字数 语种 中文
DOI 10.19651/j.cnki.emt.2107593
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多尺度排列熵
粒子群优化
支持向量机
滚动轴承
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量技术
半月刊
1002-7300
11-2175/TN
大16开
北京市东城区北河沿大街79号
2-336
1977
chi
出版文献量(篇)
9342
总下载数(次)
50
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导