原文服务方: 自动化与仪表       
摘要:
针对滚动轴承故障特征提取效果不理想和故障类型识别准确率低、速度慢等问题,该文结合变分模态分解、粒子群算法和概率神经网络提出了一种新的滚动轴承故障提取与故障类型识别方法.主要是通过变分模态分解提取有效的故障特征向量,然后通过粒子群算法优化的概率神经网络模型进行故障类型诊断.通过Matlab仿真结果显示,与标准的概率神经网络诊断故障类型相比提高了轴承故障诊断的准确性和速度性.
推荐文章
基于SVD-LMD模糊熵与PNN的滚动轴承故障诊断
奇异值分解
局部均值分解
模糊熵
概率神经网络
轴承故障诊断
基于VMD和对称差分能量算子解调的滚动轴承故障诊断方法
变分模态分解
对称差分能量算子
峭度
滚动轴承
故障诊断
基于VMD与不同包络阶次构造的风电机组滚动轴承故障诊断
风电机组
非平稳信号
计算阶比跟踪(COT)
包络阶次
变分模态分解(VMD)
逆包络阶次谱(RE-SES)
轴承故障诊断
基于概率神经网络的滚动轴承故障诊断
PNN网络
BP神经网络
故障诊断
滚动轴承
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于VMD与PSO-PNN的滚动轴承故障诊断模型
来源期刊 自动化与仪表 学科
关键词 变分模态分解 粒子群算法 概率神经网络 故障诊断
年,卷(期) 2019,(3) 所属期刊栏目 检测技术与数据处理
研究方向 页码范围 33-37
页数 5页 分类号 TP183|TP206+.3
字数 语种 中文
DOI 10.19557/j.cnki.1001-9944.2019.03.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高军伟 青岛大学自动化学院 69 408 10.0 16.0
2 张建财 青岛大学自动化学院 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (85)
共引文献  (80)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (24)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(8)
  • 参考文献(2)
  • 二级参考文献(6)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(16)
  • 参考文献(0)
  • 二级参考文献(16)
2016(8)
  • 参考文献(1)
  • 二级参考文献(7)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变分模态分解
粒子群算法
概率神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化与仪表
月刊
1001-9944
12-1148/TP
大16开
1981-01-01
chi
出版文献量(篇)
3994
总下载数(次)
0
论文1v1指导