作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在大数据环境下,为了提高航班延误预测精确度和数据处理速度,提出基于Spark框架下处理海量数据方法。本文使用决策树算法对航班数据进行分析,预测航班的延误情况,并与使用支持向量机,Logistic回归分类算法的预测结果进行比较。结果证明决策树算法具有较高的准确率和灵敏度,表明决策树算法可以应用到航班延误预测中,给航空机构提供数据支持。
推荐文章
基于Spark深度感知决策树的恒星/星系分类应用研究
Spark
深度学习
决策树
并行化
恒星/星系
分类
航班延误预测研究概述
航班延误
航班延误预测
航班延误预测流程
数据挖掘
基于决策树的汽车配置规则预测系统研究
数据挖掘
决策树
预测系统
新型偏好敏感决策树算法
决策树
偏好敏感
偏好度
属性选择
代价敏感
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Spark的决策树算法对航班延误预测研究
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 SPARK 航班延误预测 决策树算法
年,卷(期) 2021,(4) 所属期刊栏目
研究方向 页码范围 217-219
页数 3页 分类号 TP391
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SPARK
航班延误预测
决策树算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
论文1v1指导