基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A large database is desired for machine learning (ML) technology to make accurate predictions of mate-rials physicochemical properties based on their molecular structure.When a large database is not avail-able,the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database.In this work,we show that two new featurization methods,volume occupation spatial matrix and heat contribution spa-tial matrix,can improve the accuracy in predicting energetic materials' crystal density (ρcrystal) and solid phase enthalpy of formation (Hf,solid) using a database containing 451 energetic molecules.Their mean absolute errors are reduced from 0.048 g/cm3 and 24.67 kcal/mol to 0.035 g/cm3 and 9.66 kcal/mol,respectively.By leave-one-out-cross-validation,the newly developed ML models can be used to deter-mine the performance of most kinds of energetic materials except cubanes.Our ML models are applied to predict ρcrystal and Hf,solid of CHON-based molecules of the 150 million sized PubChem database,and screened out 56 candidates with competitive detonation performance and reasonable chemical struc-tures.With further improvement in future,spatial matrices have the potential of becoming multifunc-tional ML simulation tools that could provide even better predictions in wider fields of materials science.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Accurate machine learning models based on small dataset of energetic materials through spatial matrix featurization methods
来源期刊 能源化学 学科
关键词
年,卷(期) 2021,(12) 所属期刊栏目
研究方向 页码范围 364-375
页数 12页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
能源化学
双月刊
2095-4956
10-1287/O6
大连市中山路457号
eng
出版文献量(篇)
2804
总下载数(次)
0
总被引数(次)
7996
论文1v1指导