Despite being strong with many outstanding physical properties,tungsten is inherently brittle at room temperature,restricting its structural and functional applications at small scales.Here,a facile strategy has been adopted,to introduce high-density dislocations while reducing grain boundaries,through elec-tron backscatter diffraction (EBSD)-guided microfabrication of cold-drawn bulk tungsten wires.The de-signed tungsten microwire attains an ultralarge uniform tensile elongation of ~10.6%,while retains a high yield strength of ~2.4 GPa.in situ TEM tensile testing reveals that the large uniform elongation of tung-sten microwires originates from the motion of pre-existing high-density dislocations,while the subse-quent ductile fracture is attributed to crack-tip plasticity and the inhibition of grain boundary cracking.This work demonstrates the application potential of tungsten microcomponents with superior ductility and workability for micro/nanoscale mechanical,electronic,and energy systems.