原文服务方: 草业学报       
摘要:
使用机器学习算法快速、准确、大范围监测草地地上生物量(AGB)是目前研究热点,但不同机器学习算法因训练样本、超参数设置不同而存在较大差异。基于实测草地AGB和同期遥感数据、气象数据、地形数据,选择与草地AGB相关性较强的13个因子作为深度神经网络(DNN)、随机森林算法(RF)、梯度提升回归树(GBRT)、支持向量机(SVR)、人工神经网络(ANN)和高斯过程回归(GPR)算法的输入变量,建立草地AGB预测模型并从模型预测精度、稳定性、样本敏感性等方面综合评价6种模型应用潜力,分析2020年天祝藏族自治县生长季(4-9月)内草地AGB时空变化特征及其对气候的响应。结果表明:1)DNN估算草地AGB的综合性能最佳,但稳定性较差,对样本敏感性较高;GPR综合性能次于DNN,稳定性和精度均较好;GBRT、RF模拟精度较高,稳定性差;SVR和ANN精度相对其他模型较差,SVR稳定性较高,ANN稳定性较差。2)天祝藏族自治县草地AGB集中在50~250g·m-2,不同月份草地AGB空间异质性较大,整体表现为从西北向东南呈下降趋势。3)山地草甸、高寒草甸和温性草原中的AGB变化与气温表现出较为明显的正相关关系。降水量对高寒草甸、温性草原和山地草甸的影响不明显,但对温性荒漠草原类的影响较大,AGB随降水量减少呈现减少态势。以上研究结果可为监测草地生物量的方法选择和参数设置提供一定技术支持和参考依据。
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习算法的天祝藏族自治县草地地上生物量反演
来源期刊 草业学报 学科
关键词 草地生物量 机器学习 模型性能 天祝藏族自治县
年,卷(期) 2022,(4) 所属期刊栏目 研究论文
研究方向 页码范围 177-188
页数 11页 分类号
字数 语种 中文
DOI 10. 11686/cyxb2021072
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
草地生物量
机器学习
模型性能
天祝藏族自治县
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
草业学报
月刊
1004-5759
62-1105/S
兰州市嘉峪关西路768号
1990-01-01
中文
出版文献量(篇)
145
总下载数(次)
0
总被引数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导