基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In quantum information technology,crucial information is regularly encoded in different quantum states.To extract information,the identification of one state from the others is inevitable.However,if the states are non-orthogonal and unknown,this task will become awesomely tricky,especially when our resources are also limited.Here,we introduce the quantum stochastic neural network(QSNN),and show its capability to accomplish the binary discrimination of quantum states.After a handful of optimizing iterations,the QSNN achieves a success probability close to the theoretical optimum,no matter whether the states are pure or mixed.Other than binary discrimination,the QSNN is also applied to classify an unknown set of states into two types:entangled ones and separable ones.After training with four samples,it can classify a number of states with acceptable accuracy.Our results suggest that the QSNN has the great potential to process unknown quantum states in quantum information.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 State Classification via a Random-Walk-Based Quantum Neural Network
来源期刊 中国物理快报(英文版) 学科
关键词
年,卷(期) 2022,(5) 所属期刊栏目 GENERAL
研究方向 页码范围 4-19
页数 16页 分类号
字数 语种 英文
DOI 10.1088/0256-307X/39/5/050301
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理快报(英文版)
月刊
0256-307X
11-1959/O4
16开
北京中关村中国科学院物理研究所内
1984
eng
出版文献量(篇)
14318
总下载数(次)
0
论文1v1指导