基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This research discussed a deep learning method based on an improved generative adversarial network to segment the hippocampus.Different convolutional configurations were proposed to capture information obtained by a segmentation network.In addition,a generative adversarial network based on Pixel2Pixel was proposed.The generator was a codec structure combining a residual network and an attention mechanism to capture detailed information.The discriminator used a convolutional neural network to discriminate the segmentation results of the generated model and that of the expert.Through the continuously transmitted losses of the generator and discriminator,the generator reached the optimal state of hippocampus segmentation.T1-weighted magnetic resonance imaging scans and related hippocampus labels of 130 healthy subjects from the Alzheimer's disease Neuroimaging Initiative dataset were used as training and test data;similarity coefficient,sensitivity,and positive predictive value were used as evaluation indicators.Results showed that the network model could achieve an efficient automatic segmentation of the hippocampus and thus has practical relevance for the correct diagnosis of diseases,such as Alzheimer's disease.
推荐文章
Basic formation mechanisms of Lake Doroninskoye soda water, East Siberia, Russia
Saline lake
Sulfate reduction
Thermodynamic equilibrium
基于BiGRU-attention神经网络的文本情感分类模型
文本情感分类
注意力机制
双向门控循环神经网络
Text-CRNN+attention架构下的多类别文本信息分类
文本分类
卷积神经网络
循环神经网络
convolutional recurre ntneural network
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Combining Residual Attention Mechanisms and Generative Adversarial Networks for Hippocampus Segmentation
来源期刊 清华大学学报自然科学版(英文版) 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目 SPECIAL SECTION ON CLOUD COMPUTING AND BIG DADA
研究方向 页码范围 68-78
页数 11页 分类号
字数 语种 英文
DOI 10.26599/TST.2020.9010056
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报自然科学版(英文版)
双月刊
1007-0214
11-3745/N
16开
北京市海淀区双清路学研大厦B座908
1996
eng
出版文献量(篇)
2269
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导