基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
脑肿瘤图像分割问题是脑肿瘤临床诊断和治疗脑肿瘤疾病计算机辅助诊断的基础.针对脑肿瘤MRI图像分割网络深度过深和局部与全局特征信息联系匮乏导致图像分割精度降低等问题,提出一种基于三重注意力的脑肿瘤图像分割网络.首先,借鉴残差结构,将原始图像分割网络结构的编码层和解码层中的卷积模块替换为深度残差模块,解决网络加深带来的梯度消失问题.其次,通过引入三重注意力模块,融合图像局部与全局特征信息,使网络更好地学习重要的图像特征信息,提升网络对脑肿瘤图像的分割精度.最后,在MICCAI比赛发布的BraTS脑肿瘤图像分割数据集上(包括335例患者病例),采用Dice系数等脑肿瘤评价指标进行性能评估.其中,脑肿瘤整体可达85.20%,脑肿瘤核心可达87.10%,增强脑肿瘤区域可达80.80%.实验结果显示,所提出的分割网络能够在不增加计算时间的前提下提高脑肿瘤MRI图像的分割性能.
推荐文章
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
基于3D卷积神经网络的脑肿瘤医学图像分割优化
脑肿瘤
医学图像分割
多模态MRI
差异信息提取
多尺度采样
3D卷积神经网络
基于残差双注意力U-Net模型的 CT图像囊肿肾脏自动分割
CT图像
囊肿肾脏分割
深度网络分割模型
注意力机制
MCA-Net:多尺度综合注意力CNN在医学图像分割中的应用
医学图像分割
因式分解
双路径融合块
通道注意力
空间注意力
多尺度注意力块
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于三重注意力的脑肿瘤图像分割网络
来源期刊 中国生物医学工程学报 学科 医学
关键词 脑肿瘤分割 三重注意力模块 深度残差模块 MRI图像
年,卷(期) 2022,(1) 所属期刊栏目 论著|Regular Papers
研究方向 页码范围 57-63
页数 7页 分类号 R318
字数 语种 中文
DOI 10.3969/j.issn.0258-8021.2022.01.007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑肿瘤分割
三重注意力模块
深度残差模块
MRI图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国生物医学工程学报
双月刊
0258-8021
11-2057/R
大16开
北京东单三条9号
82-73
1982
chi
出版文献量(篇)
2755
总下载数(次)
5
总被引数(次)
22830
论文1v1指导