原文服务方: 化工学报       
摘要:
在工业生产过程中,生产决策的调整或生产状况的变化会导致生产过程多模态化,常用的数据聚类方法进行工况识别时存在参数选取困难或需要先验知识等限制。基于此,提出一种将人工智能领域的热扩散核密度确定密度峰的技术与高斯混合模型相结合的方法,可有效克服目前方法的缺点。该方法首先利用热扩散核密度确定密度峰的技术估算每个数据点的密度及其与局部密度较大点的距离,获取数据集的聚类中心并完成聚类;其次,利用高斯混合模型获取不同工况的特征参数:平均值、协方差和先验概率,从而对多工况历史过程进行准确的描述;最后,利用文献中仿真数据和Tennessee Eastman过程两个案例进行验证,并与K-均值法和F-J改进的高斯混合模型进行比较,证明了本文提出方法可更加方便、有效地对历史工况进行准确识别。
推荐文章
基于非参数核密度估计的密度峰值聚类算法
聚类
密度峰值
非参数核密度估计
截断距离
不确定数据信任密度峰值聚类算法
聚类
密度峰值
K近邻
证据推理
信任划分
基于密度峰值优化的谱聚类算法
谱聚类
密度峰值
密度聚类
自适应
Nystr(o)m抽样
基于非参数核密度估计的密度峰值聚类算法
聚类
密度峰值
非参数核密度估计
截断距离
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于热扩散核密度确定密度峰值法的历史工况识别
来源期刊 化工学报 学科
关键词 多模态 聚类 模型 参数估值 核密度估计
年,卷(期) 2022,(4) 所属期刊栏目 过程系统工程
研究方向 页码范围 1615-1622
页数 7页 分类号 TP274.3
字数 语种 中文
DOI 10.11949/0438-1157.20211615
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多模态
聚类
模型
参数估值
核密度估计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
化工学报
月刊
0438-1157
11-1946/TQ
大16开
1923-01-01
chi
出版文献量(篇)
11879
总下载数(次)
0
总被引数(次)
117834
论文1v1指导