基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Precipitation is one of the most important indicators of climate data, but there are many errors in precipitation measurements due to the influence of climatic conditions, especially those of solid precipitation in alpine mountains and at high latitude areas. The measured amount of precipitation in those areas is frequently less than the actual amount of precipitation. To understand the impact of climatic conditions on precipitation measurements in the mountainous areas of Northwest China and the applicability of different gauges in alpine mountains, we established a cryospheric hydrometeorology observation (CHOICE) system in 2008 in the Qilian Mountains, which consists of six automated observation stations located between 2960 and 4800 m a.s.l. Total Rain weighing Sensor (TRwS) gauges tested in the World Meteorological Organization-Solid Precipitation Intercomparison Experiment (WMO-SPICE) were used at observation stations with the CHOICE system. To study the influence of climatic conditions on different types of precipitation measured by the TRwS gauges, we conducted an intercomparison experiment of precipitation at Hulu-1 station that was one of the stations in the CHOICE system. Moreover, we tested the application of transfer functions recommended by the WMO-SPICE at this station using the measurement data from a TRwS gauge from August 2016 to December 2020 and computed new coefficients for the same transfer functions that were more appropriate for the dataset from Hulu-1 station. The new coefficients were used to correct the precipitation measurements of other stations in the CHOICE system. Results showed that the new parameters fitted to the local dataset had better correction results than the original parameters. The environmental conditions of Hulu-1 station were very different from those of observation stations that provided datasets to create the transfer functions. Thus, root-mean-square error (RMSE) of solid and mixed precipitation corrected by the original parameters increased significantly by the averages of 0.135 (353%) and 0.072 mm (111%), respectively. RMSE values of liquid, solid and mixed precipitation measurements corrected by the new parameters decreased by 6%, 20% and 13%, respectively. In addition, the new parameters were suitable for correcting precipitation at other five stations in the CHOICE system. The relative precipitation (RP) increment of different types of precipitation increased with rising altitude. The average RP increment value of snowfall at six stations was the highest, reaching 7%, while that of rainfall was the lowest, covering 3%. Our results confirmed that the new parameters could be used to correct precipitation measurements of the CHOICE system.
推荐文章
Characteristics of CO2 in unsaturated zone (~90 m) of loess tableland, Northwest China
Unsaturated zone
Soil CO2
Carbon stock in deep loess
Quantitative paleoclimate reconstruction
Loess
An experimental study on metal precipitation driven by fluid mixing: implications for genesis of car
Metal precipitation
Fluid mixing
Sulfur species
MVT lead–zinc ore deposits
Carbonate-hosted
lead–zinc deposits
Ore genesis of Badi copper deposit, northwest Yunnan Province, China: evidence from geology, fluid i
Badi copper deposit
Fluid inclusion
Sulfur isotope
Hydrogen and oxygen isotope
Ore genesis
The Contribution of Extreme Precipitation to the Total Precipitation in China
极端降水
中国
降水总量
总降水量
干燥地区
气象观测站
降水资料
时间尺度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Adjustment of precipitation measurements using Total Rain weighing Sensor (TRwS) gauges in the cryospheric hydrometeorology observation (CHOICE) system of the Qilian Mountains, Northwest China
来源期刊 干旱区科学 学科
关键词
年,卷(期) 2022,(3) 所属期刊栏目 Research article
研究方向 页码范围 310-324
页数 15页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
干旱区科学
双月刊
1674-6767
65-1278/K
新疆乌鲁木齐市北京南路818号
eng
出版文献量(篇)
793
总下载数(次)
0
论文1v1指导