基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的混合编码网络在小样本数据训练情况下,捕捉用户意图与语义分析方面存在局限性,很难应用到新领域进行迁移训练.时间感知注意混合编码网络(time-aware attention hybrid code networks,TAA-HCN)通过构建时间感知的注意力机制和用户意图集成(user intent integration,UII)的门控机制建模用户意图与动作措施的关系,捕捉用户意图随时间动态变化,结合元学习的思想进行模型梯度自适应,以便模型快速收敛.TAA-HCN模型在WOZ数据集与BABI数据集上进行试验与分析,当目标域数据为总数据的5%时,F1与BLEU指标几乎全收敛,且准确率为69.3%,这表明了本研究的模型具有仅需很少的目标数据即可实现良好性能的能力.
推荐文章
基于混合注意力机制的软件缺陷预测方法
软件缺陷预测
语法语义信息
静态度量元
多头注意力机制
全局注意力机制
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
基于混合式注意力机制的语音识别研究
卷积
注意力机制
全局平均池化
长短期记忆网络
LAS模型
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于时间感知注意力机制的混合编码网络方法
来源期刊 山东大学学报(工学版) 学科 工学
关键词 特定领域对话系统 元学习 用户意图时间感知注意机制 混合编码网络 时间感知递归单元
年,卷(期) 2022,(2) 所属期刊栏目 机器学习与数据挖掘|Machine Learning & Data Mining
研究方向 页码范围 23-30,40
页数 9页 分类号 TP181
字数 语种 中文
DOI 10.6040/j.issn.1672-3961.0.2021.287
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特定领域对话系统
元学习
用户意图时间感知注意机制
混合编码网络
时间感知递归单元
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
总被引数(次)
24236
论文1v1指导