基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了让网络捕捉到更有效的内容来进行行人的判别,该文提出一种基于阶梯型特征空间分割与局部分支注意力网络(SLANet)机制的多分支网络来关注局部图像的显著信息.首先,在网络中引入阶梯型分支注意力模块,该模块以阶梯型对特征图进行水平分块,并且使用了分支注意力给每个分支分配不同的权重.其次,在网络中引入多尺度自适应注意力模块,该模块对局部特征进行处理,自适应调整感受野尺寸来适应不同尺度图像,同时融合了通道注意力和空间注意力筛选出图像重要特征.在网络的设计上,使用多粒度网络将全局特征和局部特征进行结合.最后,该方法在3个被广泛使用的行人重识别数据集Market-1501,DukeMTMC-reID和CUHK03上进行验证.其中在Market-1501数据集上的mAP和Rank-1分别达到了88.1%和95.6%.实验结果表明,该文所提出的网络模型能够提高行人重识别准确率.
推荐文章
基于卷积注意力机制和多损失联合的跨模态行人重识别
跨模态行人重识别
深度学习
卷积注意力机制
多损失联合
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
融合网格掩膜和残差坐标注意力的行人重识别
行人重识别
网格掩膜
残差网络
注意力机制
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于阶梯型特征空间分割与局部注意力机制的行人重识别
来源期刊 电子与信息学报 学科 工学
关键词 行人重识别 特征空间分割 注意力机制 局部特征
年,卷(期) 2022,(1) 所属期刊栏目 模式识别与智能信息处理|Pattern Recognition and Intelligent Information Processing
研究方向 页码范围 195-202
页数 8页 分类号 TN911.73|TP391.41
字数 语种 中文
DOI 10.11999/JEIT201006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人重识别
特征空间分割
注意力机制
局部特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导