基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Near infrared-visible ( NIR-VIS) face recognition is to match an NIR face image to a VIS image. The main challenges of NIR-VIS face recognition are the gap caused by cross-modality and the lack of sufficient paired NIR-VIS face images to train models. This paper focuses on the generation of paired NIR-VIS face images and proposes a dual variational generator based on ResNeSt ( RS-DVG ) . RS-DVG can generate a large number of paired NIR-VIS face images from noise, and these generated NIR-VIS face images can be used as the training set together with the real NIR-VIS face images. In addition, a triplet loss function is introduced and a novel triplet selection method is proposed specifically for the training of the current face recognition model, which maximizes the inter-class distance and minimizes the intra-class distance in the input face images. The method proposed in this paper was evaluated on the datasets CASIA NIR-VIS 2. 0 and BUAA-VisNir, and relatively good results were obtained.
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
The influence of urbanization on karst rivers based on nutrient concentration and nitrate dual isoto
Urbanization
Urban river
Nitrate isotopes
Southwestern China
Chengguan River
FACE水稻生育期模拟
水稻
FACE
生育期
模拟模型
FACE水稻氮素动态的模拟研究
水稻
FACE
N素累积量
植株含N率
模拟模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Dual Variational Generation Based ResNeSt for Near Infrared-Visible Face Recognition
来源期刊 东华大学学报(英文版) 学科 工学
关键词
年,卷(期) 2022,(2) 所属期刊栏目 Artificial Intelligence
研究方向 页码范围 156-162
页数 7页 分类号 TP391.4
字数 语种 英文
DOI 10.19884/j.1672-5220.202104022
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
东华大学学报(英文版)
双月刊
1672-5220
31-1920/N
大16开
上海市延安西路1882号《东华大学学报》编辑部
1984
eng
出版文献量(篇)
2818
总下载数(次)
0
总被引数(次)
4113
论文1v1指导