基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Climate warming has been projected to enhance vegetation growth more strongly in higher latitudes than in lower latitudes,but different projections show distinct regional differences.By employing big data analysis(deep learning),we established gridded,global-scale,climate-driven vegetation growth models to project future changes in vegetation growth under SSP scenarios.We projected no substantial trends of vegetation growth change under the sustainable development scenario(SSP 1-1.9)by the end of the 21st century.However,the increase of vegetation growth driven by climate warming shows distinct regional variability under the scenario representing high carbon emissions and severe warming(SSP5-8.5),especially in Northeast Asia where growth could increase by(6.00%±4.21%).This may be attributed to the high temperature sensitivities of the deciduous needleleaf forests and permanent wetlands in these regions.When the temperature sensitivity that is defined as permutation importance in deep learning is greater than 0.05,the increase in vegetation growth will be more prominent.In addition,an extreme temperature increase across grasslands,as well as changing land-use management in northern China may also influence the vegetation growth in the future.The results suggest that the sustainable development scenario can maintain stable vegetation growth,and it may be a reliable way to mitigate global warming due to potential climate feedbacks driven by vegetation changes in boreal regions.Deciduous needleleaf forests will be a centre of greening in the future,and it should become the focus of future vegetation dynamics modelling studies and projections.
推荐文章
从Scenarios到状态图的算法分析
Scenarios
顺序图
状态图
状态转换
NSEC教材中“warming-up”板块的分析与评价
“warming-up”板块
教材分析
教材评价
Deep web接口查询能力估计
查询接口
查询能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep learning projects future warming-induced vegetation growth changes under SSP scenarios
来源期刊 气候变化研究进展(英文版) 学科
关键词
年,卷(期) 2022,(2) 所属期刊栏目 Impacts of climate change
研究方向 页码范围 251-257
页数 7页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
气候变化研究进展(英文版)
季刊
1674-9278
11-5918/ P
16开
北京市中关村南大街46号国家气候中心
2010
eng
出版文献量(篇)
377
总下载数(次)
0
总被引数(次)
708
论文1v1指导