基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Data with missing values,or incomplete information,brings some challenges to the development of classification,as the incompleteness may significantly affect the performance of classifiers.In this paper,we handle missing values in both training and test sets with uncertainty and imprecision reasoning by proposing a new belief combination of classifier(BCC)method based on the evidence theory.The proposed BCC method aims to improve the classification performance of incomplete data by characterizing the uncertainty and imprecision brought by incompleteness.In BCC,different attributes are regarded as independent sources,and the collection of each attribute is considered as a subset.Then,multiple classifiers are trained with each subset independently and allow each observed attribute to provide a sub-classification result for the query pattern.Finally,these sub-classification results with different weights(discounting factors)are used to provide supplementary information to jointly determine the final classes of query patterns.The weights consist of two aspects:global and local.The global weight calculated by an optimization function is employed to represent the reliability of each classifier,and the local weight obtained by mining attribute distribution characteristics is used to quantify the importance of observed attributes to the pattern classification.Abundant comparative experiments including seven methods on twelve datasets are executed,demonstrating the out-performance of BCC over all baseline methods in terms of accuracy,precision,recall,F1 measure,with pertinent computational costs.
推荐文章
基于语义的Data Cube数字水印技术
数字水印
语义
数据立方体
版权
Data Transfer Object模式探讨
Data Transfer Object 三层应用 DataSet
Statistics matters in interpretations of non-traditional stable isotopic data
Isotopic data processing
Error propagation
Significant digits
Difference between means with uncertainties
基于deep belief nets的维吾尔语句子级情感分析
维吾尔语
情感分类
深度学习
深度信念网络
词语嵌入
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Belief Combination of Classifiers for Incomplete Data
来源期刊 自动化学报(英文版) 学科
关键词
年,卷(期) 2022,(4) 所属期刊栏目 PAPERS
研究方向 页码范围 652-667
页数 16页 分类号
字数 语种 英文
DOI 10.1109/JAS.2022.105458
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报(英文版)
双月刊
2329-9266
10-1193/TP
大16开
北京市海淀区中关村东路95号
80-604
2014
eng
出版文献量(篇)
801
总下载数(次)
0
总被引数(次)
1766
论文1v1指导