With the emer-gence of wearable electronics, flexible energy storage materials have been extensively studied in recent years. However, most stud-ies focus on improving the electro-chemical properties, ignoring the flexible mechanism and structure design for flexible electrode mate-rials with high rate capacities and long-time stability. In this study, porous, kinked, and entangled net-work structures are designed for highly flexible fiber films. Based on theoretical analysis and finite element simulation, the bending degree of the porous structure (30% porosity) increased by 192% at the micro-level. An appropriate increase in kinking degree at the meso-level and contact points in entanglement network at the macro-level are beneficial for the flexibility of fiber films. Therefore, a porous and entan-gled network of sulfur-/nitrogen-co-doped kinked carbon nanofibers (S/N-KCNFs) is synthesized. The nanofiber films synthesized from melamine as nitrogen sources and segmented vulcanization exhibited a porous, kinked, and entangled network structure, and the stretching degree increased several times. The flexible S/N-KCNFs anode delivered a higher rate performance of 270 mAh -g?1 at a current density of 2000 mA -g?1 and a higher capacity retention rate of 93.3% after 2000 cycles. Moreover, the foldable pouch cell assembled by potassium-ion hybrid supercapacitor operated safely at large-angle bending and showed long-time stability of 88% capacity retention after 4000 cycles. This study provides a new idea and strategy for the flexible structure design of high-performance potassium-ion storage materials.