基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习已经在高光谱血细胞图像分类中获得广泛应用.然而,传统深度学习模型需要大量标记数据作为样本,忽略了高光谱图像"图谱合一"的性质,不能充分挖掘高光谱图像内蕴信息,且存在参数多、复杂度高问题.针对上述问题,提出了空-谱可分离卷积神经网络(S3CNN),在降低模型复杂度的同时有效提升高光谱血细胞图像分类性能.根据高光谱血细胞图像分布的空间一致性,S3CNN模型首先通过空-谱联合距离(SSCD)得到训练集中各像素点的空-谱近邻,并对这些近邻点赋予与相应中心像素点相同的标签,进行样本扩充,然后在网络模型中采用一组深度卷积和点卷积代替经典卷积,优化了模型复杂度,实现血细胞分类.在Bloodcells1-3和Bloodcells2-2两个不同场景下的高光谱血细胞数据集上的实验结果显示,本文所提算法的总体分类精度分别达到87.32%、89.02%.与其他传统血细胞分类算法相比,本文算法能有效提升高光谱血细胞图像的分类性能.在训练时间上,所采用的可分离卷积模型比经典卷积模型减少27%.实验结果表明,所提网络框架不仅能有效提升高光谱血细胞分类性能,且可减少模型训练时间.
推荐文章
基于医学高光谱显微图像光谱空间信息的血细胞分类
医学高光谱成像
血细胞分类
Gabor滤波器
稀疏表示
基于加权K近邻和卷积神经网络的高光谱图像分类
高光谱图像分类
K近邻
卷积神经网络
高光谱图像与卷积神经网络相结合的油桃轻微损伤检测
油桃
卷积神经网络
轻微损伤检测
颜色特征
图像分块
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向高光谱显微图像血细胞分类的空-谱可分离卷积神经网络
来源期刊 光学精密工程 学科 工学
关键词 高光谱图像 血细胞分类 卷积神经网络 空-谱联合距离 可分离卷积
年,卷(期) 2022,(8) 所属期刊栏目 信息科学|Information Sciences
研究方向 页码范围 960-969
页数 10页 分类号 TP391.4
字数 语种 中文
DOI 10.37188/OPE.20223008.0960
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像
血细胞分类
卷积神经网络
空-谱联合距离
可分离卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学精密工程
月刊
1004-924X
22-1198/TH
大16开
长春市东南湖大路3888号
12-166
1959
chi
出版文献量(篇)
6867
总下载数(次)
10
总被引数(次)
98767
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导