基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对视网膜黄斑病变数据集缺失以及视网膜图像冗余度过大问题,建立了包含3种视网膜病变的视网膜黄斑疾病检测数据集,并提出了一种基于改进YOLOV5的视网膜病变检测模型.该模型在特征提取网络中引入了改进的注意力机制模块,突出病变区域,降低视网膜图像中大量背景的影响.其次,改进加强特征提取网络,加权融合具有大量细节信息的浅层特征,增强网络对视网膜病变的定位能力.实验结果表明,本文模型具有良好的视网膜病变检测效果,检测精度达97.3%.
推荐文章
改进 YoloV5 的行人检测算法
目标检测
行人遮挡检测
随机擦除
Res2Net
注意力机制
Confluence
基于Swin Transformer的YOLOv5安全帽佩戴检测方法
安全帽佩戴检测
YOLOv5
Swin Transformer
Ghost
新型跨尺度特征融合
K-means++
基于改进YOLOv5的轻量化航空目标检测方法
深度学习
目标检测
注意力
模型压缩
通道剪枝
基于改进YOLOv5的遥感图像目标检测研究
遥感图像
目标检测
YOLOv5
SimAM
CFP
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于增强特征融合YOLOV5的视网膜病变检测
来源期刊 应用科技 学科 工学
关键词 深度学习 神经网络 目标检测 视网膜 光学相干断层扫描 黄斑病变 医学图像 注意力机制
年,卷(期) 2022,(1) 所属期刊栏目 智能科学与技术
研究方向 页码范围 66-72
页数 7页 分类号 TP391.7
字数 语种 中文
DOI 10.11991/yykj.202201001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
神经网络
目标检测
视网膜
光学相干断层扫描
黄斑病变
医学图像
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用科技
双月刊
1009-671X
23-1191/U
大16开
哈尔滨市南通大街145号1号楼
14-160
1974
chi
出版文献量(篇)
4861
总下载数(次)
7
总被引数(次)
21528
论文1v1指导