原文服务方: 微电子学与计算机       
摘要:
针对目前现有算法不能很好适用于水下目标检测,同时为提高水下目标检测的实时性和准确性,提出一种基于F-CBAM注意力机制的YOLOv5水下目标检测网络模型FAttention-YOLOv5.模型采用单阶段目标检测网络模型YOLOv5作为基础模型,在模型中嵌入提出的F-CBAM注意力机制,通过在CBAM结构中引用FReLU激活函数,在激活函数阶段通过二维空间捕捉复杂的特征分布情况,实现像素级的空间信息建模能力,提高模型准确率;采用F-CBAM中的通道注意力机制和空间注意力机制提高目标物体的通道权重以及扩大目标对原图的感受野,提高目标检测模型对特征的学习能力;并在FAttention-YOLOv5模型中融合递归网络特征金字塔,通过特征递归使网络充分学习不同尺度的图像特征,从而提高小目标的检测精度;最后对改进模型的损失函数进行优化,避免新模型梯度消失或爆炸.实验结果表明:所设计的水下目标检测模型FAttention-YOLOv5,可以提高模型的特征提取能力,从而有效提高水下目标检测的准确度,为海洋生物捕捉提供新型解决方案和技术辅助。
推荐文章
基于Clite-YOLOv5的鸡状态检测算法
目标检测
深度学习
鸡状态检测
图像处理
YOLOv5
注意力机制
改进 YoloV5 的行人检测算法
目标检测
行人遮挡检测
随机擦除
Res2Net
注意力机制
Confluence
基于YOLOv7的交通目标检测算法研究
交通目标检测
YOLOv7网络
注意力机制
浅层网络检测层
SIoU损失函数
基于SA-YOLOv5 的交通标志目标检测研究
目标检测
交通标志识别
注意力机制
YOLOv5
嵌入式系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FAttention-YOLOv5的水下目标检测算法研究
来源期刊 微电子学与计算机 学科 工学
关键词 F-CBAM YOLOv5 FAttention-YOLOv5 水下目标检测
年,卷(期) 2022,(6) 所属期刊栏目 图像处理
研究方向 页码范围 60-68
页数 8页 分类号 TP751
字数 语种 中文
DOI 10.19304/J.ISSN1000-7180.2021.1261
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
F-CBAM
YOLOv5
FAttention-YOLOv5
水下目标检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
论文1v1指导