基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
关系分类作为构建结构化知识的重要一环,在自然语言处理领域备受关注.但在很多应用领域中(如医疗、金融等领域)收集充足的用于训练关系分类模型的数据十分困难.近年来,仅需要少量训练样本的小样本学习逐渐应用于关系分类研究中.该文对近期小样本关系分类模型与方法进行了系统的综述.根据度量方法的不同,将现有方法分为原型式和分布式两大类.根据是否利用额外信息,将模型分为预训练和非预训练两大类.此外,除了常规设定下的小样本学习,该文还梳理了跨领域和稀缺资源场景下的小样本学习,探讨了目前小样本关系分类方法的局限性,并分析了跨领域小样本学习面临的技术挑战.最后,展望了小样本关系分类未来的发展方向.
推荐文章
基于特征关系依赖网络的小样本学习方法
深度学习
小样本学习
度量学习
特征优化
原型调整
基于小样本集弱学习规则的KNN分类算法
机器学习
K-最近邻分类
小样本集
标签数据
弱学习规则
浮空器主缆绳表面的小样本学习缺陷检测研究
缺陷检测
小样本学习
度量学习
浮空器
改进型VGG算法对小样本路面破损的分类识别
道路工程
路面破损
卷积神经网络
VGG模型
分类识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 小样本关系分类研究综述
来源期刊 中文信息学报 学科 工学
关键词 关系分类 小样本学习 元学习
年,卷(期) 2022,(2) 所属期刊栏目 综述|Survey
研究方向 页码范围 1-11
页数 11页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1003-0077.2022.02.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
关系分类
小样本学习
元学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
相关基金
北京市自然科学基金
英文译名:Natural Science Foundation of Beijing Province
官方网址:http://210.76.125.39/zrjjh/zrjj/
项目类型:重大项目
学科类型:
论文1v1指导