原文服务方: 计算机应用研究       
摘要:
线性判别分析(LDA)是模式识别领域的一个经典方法,但是LDA难以克服小样本问题.针对LDA的小样本问题,提出一种双曲余弦矩阵鉴别分析方法(HCDA).该方法首先给出了双曲余弦矩阵函数的定义及其特征系统,再利用双曲余弦矩阵函数特征系统的特点,将其引入Fisher准则中进行特征提取.HCDA有两方面的优势:a)避免了小样本问题,可以提取更多的鉴别信息;b)HCDA方法隐含了一个非线性映射.该映射具有扩大样本间距离的作用,并且对不同类别样本间距离的扩大尺度要大于同类别样本间距离的扩大尺度,从而更有利于模式分类.在手写数字库、手写字母图像库和Georgia Tech人脸图像库上的实验结果表明,相对于具有代表性的解决LDA小样本问题的方法,HCDA具有更好的识别性能.
推荐文章
基于虚拟样本的正则化鉴别分析方法
小样本问题
正则化鉴别分析
虚拟训练样本
人脸识别
基于插值法的小样本时序建模预报研究
插值
大气机
小样本
时序
建模
基于特征关系依赖网络的小样本学习方法
深度学习
小样本学习
度量学习
特征优化
原型调整
基于小样本集弱学习规则的KNN分类算法
机器学习
K-最近邻分类
小样本集
标签数据
弱学习规则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双曲余弦矩阵鉴别分析的小样本问题研究
来源期刊 计算机应用研究 学科
关键词 双曲余弦函数 矩阵函数 线性判别分析 小样本问题
年,卷(期) 2020,(8) 所属期刊栏目 图形图像技术
研究方向 页码范围 2517-2521
页数 5页 分类号 TP391.4
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.01.0099
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (9)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1936(2)
  • 参考文献(1)
  • 二级参考文献(1)
1948(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(6)
  • 参考文献(6)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
双曲余弦函数
矩阵函数
线性判别分析
小样本问题
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导