原文服务方: 机械传动       
摘要:
针对风电机轴承历史运行数据来源单一、数据量少,导致风电机轴承故障诊断性能受限问题,提出一种基于数据生成与迁移学习的轴承小样本故障诊断方法.首先,对于轴承数据集中存在类不平衡、数据稀缺的问题,提出一种基于门限机制的数据生成方法,采用与轴承驱动端同轴的桨叶端数据为模板产生足量的生成数据,结合真实数据作为源数据集;然后,根据数据的时序关联性和小样本的应用场景,提出一种基于一维卷积神经网络(One Dimensional Convolutional Neural Net-work,1DCNN)和双向门限单元(Bidirectional Gated Recurrent Unit,BiGRU)的迁移学习(Transfer Learning)方法,先用源数据集在训练网络上训练获得源模型,再用少量驱动端数据作为目标数据集对其进行微调(Fine-tuning)获得目标模型;最后,对目标模型全连接层的输出采用Softmax函数进行故障诊断.实验表明,提出的故障检测方法在目标集小样本数据的场景下平均精度达到99.67%,分类效果明显,泛化能力强.
推荐文章
小样本条件下基于SGMM模型的滚动轴承故障诊断研究
小样本条件
SGMM模型
变分模态
熵解卷积
端点效应
基于迁移 QCNN的孪生网络轴承故障诊断方法
迁移
QCNN
孪生网络
Quadratic神经元
故障诊断
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
采用多通道样本和深度卷积神经网络的轴承故障诊断方法
轴承故障诊断
三通道样本
深度卷积神经网络
连续小波变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于数据生成与迁移学习的轴承小样本故障诊断
来源期刊 机械传动 学科
关键词 风电机轴承 小样本 数据生成 门限机制 迁移学习 微调 故障诊断
年,卷(期) 2020,(11) 所属期刊栏目 试验分析
研究方向 页码范围 139-144
页数 6页 分类号
字数 语种 中文
DOI 10.16578/j.issn.1004.2539.2020.11.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴定会 119 542 11.0 16.0
2 吴楚宜 2 0 0.0 0.0
3 方钦 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风电机轴承
小样本
数据生成
门限机制
迁移学习
微调
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械传动
月刊
1004-2539
41-1129/TH
大16开
河南省郑州市科学大道149号
1977-01-01
中文
出版文献量(篇)
6089
总下载数(次)
0
总被引数(次)
31469
论文1v1指导