摘要:
This study investigated the microstructure, physical, and mechanical properties of die-cast A308 alloy subjected to mechanical vibration during solidification. Different frequencies (0, 20, 30, 40, and 50 Hz) at constant amplitude (31 μm) were employed using a power amplifier as the power input device. X-ray diffraction, optical microscopy, and scanning electron microscopy were used to examine the mor-phological changes in the cast samples under stationary and vibratory conditions. Metallurgical features of the castings were evaluated using ImageJ software. The average values of metallurgical features, including primary α-Al grain size, dendrite arm spacing, average area of eutect-ic silicon, aspect ratio, and percentage porosity, reduced by 34%, 59%, 56%, 22%, and 62%, respectively, at 30 Hz frequency compared with stationary casting. Mechanical tests of the cast samples showed that the yield strength (YS), ultimate tensile strength (UTS), percentage elonga-tion (%EL), and microhardness (HV) increased by 8%, 13%, 17%, and 16%, respectively, at 30 Hz frequency compared with stationary cast-ing. The fractured surface of the tensile specimens exhibited mixed-mode fracture behavior because of brittle facets, cleavage facets, ductile tearing, and dimple morphologies. The presence of small dimples showed that plastic deformation occurred before fracture.