基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对细粒度车型识别率低,车型区别主要集中在鉴别性部件上以及深度学习不能有效对部件进行关注的问题,提出一种基于部件关注DenseNet(part-focused DenseNet,PF-DenseNet)的细粒度车型识别模型.该模型可以基于细粒度车型的车灯、车标等区分性部件进行有效分类,通过处理层(process layer)对车型部件信息反复加强提取并进行最大池化下采样,获取更多的车型部件信息,然后通过密集卷积对特征通道进一步复用提取,密集卷积前嵌入独立组件(independent component,IC)层,获得相对独立的神经元,增强网络独立性,提高模型的收敛极限.实验结果表明,该模型在Stanford cars-196数据集上的识别准确率、查全率和F1分别达到95.0%、94.9%和94.8%,高于经典卷积神经网络,并具有较小的参数量,与其他方法相比实现了最高准确率,验证了该车型识别模型的有效性.
推荐文章
基于朴素贝叶斯的细粒度意见挖掘
语言特征
朴素贝叶斯
细粒度
意见挖掘
条件随机场
评价要素
基于HBase的细粒度访问控制方法研究
HBase
访问控制
细粒度权限
数据库角色
基于Modbus功能码细粒度过滤算法的研究
Modbus TCP/IP协议
功能码
细粒度过滤
数据存储结构
基于卷积网络的车辆定位与细粒度分类算法
卷积神经网络
细分车型识别
车牌定位
区域回归
多标签分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于部件关注DenseNet的细粒度车型识别
来源期刊 智能系统学报 学科 工学
关键词 细粒度车型识别 部件关注 密集连接网络 独立组件 数据增强 深度学习 特征提取 特征复用
年,卷(期) 2022,(2) 所属期刊栏目 人工智能基础|Fundamentals of Artificial Intelligence
研究方向 页码范围 402-410
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.11992/tis.202012012
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
细粒度车型识别
部件关注
密集连接网络
独立组件
数据增强
深度学习
特征提取
特征复用
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
相关基金
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
论文1v1指导