基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决现有的车型识别算法对车型特征描述不充分的情况,提出融合注意力机制的高效率网络车型识别算法.利用高效率网络中的复合缩放方式来平衡网络的深度、宽度和分辨率,将深度可分离卷积集成到基础特征提取模块中来提高模型准确率.增加双通道的残差注意力机制来关注图片中的关键信息,获得含有更加丰富语义信息的特征图.在网络的末端添加单独的softmax分类器,使用标签平滑正则化对损失函数进行处理,减小模型过拟合的问题.在BIT-Vehicles数据集上进行实验,结果表明,提出方法的平均分类准确率为96.83%,较改进前的模型提高了1.11%,优于现有DCNN、Faster-CNN的改进算法,较Faster R-CNN提升了7.16%.
推荐文章
融合注意力机制和区域生长的裂缝识别算法研究
数字图像
裂缝识别
区域生长
注意力机制
基于多尺度融合注意力机制的人脸表情识别研究
计算机视觉
深度学习
人脸表情识别
特征提取
多尺度特征融合
注意力机制
多注意力机制下自愈人脸表情识别
人脸表情识别多
注意力机制
自愈
不确定性
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合注意力机制的高效率网络车型识别
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 车型识别 高效率网络 残差注意力机制 标签平滑正则化 深度可分离卷积
年,卷(期) 2022,(4) 所属期刊栏目 计算机技术、信息工程|Computer Technology, Information Engineering
研究方向 页码范围 775-782
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2022.04.017
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车型识别
高效率网络
残差注意力机制
标签平滑正则化
深度可分离卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导