Synthesis of high-performance nickel hydroxide nanosheets/gadolinium doped-α-MnO2 composite nanorods as cathode and Fe3O4/GO nanospheres as anode for an all-solid-state asymmetric supercapacitor
Synthesis of high-performance nickel hydroxide nanosheets/gadolinium doped-α-MnO2 composite nanorods as cathode and Fe3O4/GO nanospheres as anode for an all-solid-state asymmetric supercapacitor
The wide use of manganese dioxide (MnO2) as an electrode in all-solid-state asymmetric supercapacitors(ASCs) remains challenging because of its low electrical conductivity.This complication can be circum-vented by introducing trivalent gadolinium (Gd) ions into the MnO2.Herein,we describe the successful hydrothermal synthesis of crystalline Gd-doped MnO2 nanorods with Ni(OH)2 nanosheets as cathode,which we combined with Fe3O4/GO nanospheres as anode for all-solid-state ASCs.Electrochemical tests demonstrate that Gd doping significantly affected the electrochemical activities of the MnO2,which was further enhanced by introducing Ni(OH)2.The GdMnO2/Ni(OH)2 electrode offers sufficient surface elec-trochemical activity and exhibits excellent specific capacity of 121.8 mA h g-1 at 1 A g-1,appealing rate performance,and ultralong lifetime stability (99.3% retention after 10,000 discharge tests).Furthermore,the GdMnO2/Ni(OH)2//PVA/KOH//Fe3O4/GO solid-state ASC device offers an impressive specific energy density (60.25 W h kg-1) at a high power density (2332 W kg-1).This investigation thus shows its large potential in developing novel approaches to energy storage devices.
Synthesis of high-performance nickel hydroxide nanosheets/gadolinium doped-α-MnO2 composite nanorods as cathode and Fe3O4/GO nanospheres as anode for an all-solid-state asymmetric supercapacitor