Perovskite solar cells have reached a power-conversion efficiency (PCE) of 25.6%,showing great potential with reliable moisture and heat stability.Most results are achieved on small-area devices,using conven-tional thin-film processing technologies like spin-coating method.However,such approaches may not be upscaled for large-area substrates.Thus,strategies and materials need to be developed for manufacturing processing routes to realize future commercial photovoltaic fabrications.Notable results have been achieved on large-area perovskite solar cells.In this review,similarities and differences of large-area per-ovskite fabrication mechanisms between the various pathways are investigated,especially on the param-eters affecting the nucleation and crystal growth kinetics.Moreover,the methods for large-area transporting layers and electrodes are discussed,and some key issues from cells to modules.Challenges and opportunities are proposed to pave the way of high-efficiency perovskite solar modules.