基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高光伏电站短期预测功率的精度,提出一种基于相似日原理和改进CPSO-Elman神经网络模型的光伏电站短期功率预测方法.将历史运行数据按照时长划分不同季节,采用欧式距离对天气类型进行处理并建立天气类型系数,通过灰色关联分析法和余弦相似度指标结合选取相似日.由于粒子群算法搜索速度慢且存在易早熟等缺陷,采用改进混沌粒子群(CPSO)来优化Elman神经网络的权值和阈值,对夏季不同天气类型条件下的短期功率分别预测.选用南疆某光伏电站2020年运行数据进行分析,结果表明:CPSO-Elman在非晴天条件下也具有较高的预测精度.
推荐文章
基于Elman神经网络模型的短期光伏发电功率预测
光伏发电
功率预测
相似日
Elman神经网络
基于相似日的光伏发电短期预报模型
光伏发电
功率预报
Elman神经网络
相似日分类
基于相似日理论和IPSO-Elman模型的短期光伏发电功率预测
光伏发电
功率预测
粒子群优化(PSO)算法
Elman神经网络
相似日理论
基于相似日和VMD-GRU的光伏功率组合预测方法研究
光伏发电功率预测
相似日
变分模态分解
门控循环单元神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相似日原理和CPSO-Elman模型的光伏电站短期功率预测
来源期刊 能源与环保 学科 工学
关键词 光伏电站 功率预测 相似日原理 粒子群算法 Elman神经网络
年,卷(期) 2022,(2) 所属期刊栏目 资源利用与节能|Resource Utilization and Energy Saving
研究方向 页码范围 208-214
页数 7页 分类号 TM615
字数 语种 中文
DOI 10.19389/j.cnki.1003-0506.2022.02.035
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
光伏电站
功率预测
相似日原理
粒子群算法
Elman神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
能源与环保
月刊
1003-0506
41-1443/TK
大16开
郑州市高新技术产业开发区枫杨街17号
1979
chi
出版文献量(篇)
9074
总下载数(次)
4
总被引数(次)
17347
论文1v1指导