基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
视频摘要是通过生成关键帧或片段来达到压缩视频的效果,能够在概括视频主要内容的基础上极大缩短观看时间,在视频快速浏览与检索领域应用广泛.现有方法大多只基于图像内容进行探索,忽略了视频具有时序的特点,且模型对波动数据学习能力较差,导致生成的摘要缺乏时间连贯性和代表性.提出了一个以编码器-解码器为框架的视频摘要网络.具体来说,编码部分由卷积神经网络提取特征,通过自注意力机制提升对关键特征的权重,而解码部分由融合了随机森林的双向长短期记忆网络构成,通过调整随机森林和双向长短期记忆网络在损失函数中所占比例,使模型具有较强的稳定性和预测准确率.实验在两个数据集上与其他七种方法进行了比较,综合实验结果证明了方法的有效性与可行性.提出了自注意力机制和随机森林回归的视频摘要网络,利用自注意力机制完成对特征的优化,将双向长短期记忆网络与随机森林结合,提升模型的稳定性与泛化性,有效降低损失值,使得生成的视频摘要更符合用户视觉特性.
推荐文章
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
一种基于自注意力机制的组推荐方法
群组推荐
自注意力机制
协同过滤
深度学习
融合策略
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自注意力机制和随机森林回归的视频摘要生成
来源期刊 计算机工程与应用 学科 工学
关键词 计算机视觉 视频摘要 自注意力机制 长短期记忆网络 随机森林回归
年,卷(期) 2022,(4) 所属期刊栏目 模式识别与人工智能|Pattern Recognition and Artificial Intelligence
研究方向 页码范围 198-205
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2104-0388
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计算机视觉
视频摘要
自注意力机制
长短期记忆网络
随机森林回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
甘肃省自然科学基金
英文译名:Natural Science Foundation of Gansu Province
官方网址:http://www.nwnu.edu.cn/kjc/glbf/gsshzrkxjjzxglbf.htm
项目类型:
学科类型:
论文1v1指导