<正> “球心和截面圆心的连线垂直于截面”是球截面的一条性质,教科书上没有给出证明过程,如何证呢?下面给出四种证明方法.方法一:利用球面的第一定义(半圆以它的直径为旋转轴,旋转所成的曲面叫做球面)并结合圆的有关性质证明.如图1所示,已知圆 O 及圆 O 内任一条弦 AB,过点 D 作直径 EF 垂直于 AB 于 K.当半圆 EAF(半圆EBF)绕着它的直径 EF 旋转一周得到球面的同时,AK(或 KB)的轨迹为圆面,显然,OK 垂直这个圆面,其中D 是球心,K 是圆面的圆心,这个圆面是球 O 的截面,所以,球心和截面圆心的连线垂直于截面.