This paper is concerned with the initial value problem for non-stationary Stokes flows,under a certain non-linear boundary condition which can be called the leak boundarycondition of friction type. Theoretically, our main purpose is to show the strong solvability(i.e.,the unique existence of the L2-strong solution) of this initial value problem by meansof the non-linear semi-group theory originated with Y. Komura. The method of analysiscan be applied to other boundary or interface conditions of friction type. It should benoted that the result yields a sound basis of simulation methods for evolution problemsinvolving these conditions.