摘要:
为了进一步研究极小极大不等式,首先引进了H-空间,将极小极大定理中的闭性条件与凸性条件进一步削弱,利用反证法与有限交性质将Fan-Ha截口定理以及极小极大定理推广为非线性H-空间上更一般的形式:设 (X,{ΓA}),(Y,{ΓD})为2个HausdorffH-空间,BCX×Y,且满足如下条件:a.对每个x∈X,{y∈Y,(x,y)B}为H-凸集或空集.b.对每个y∈Y,{x∈X,(x,y)∈C}为X中的紧闭集.c.对每个x∈X,存在AxX×Y,Ax=Px×Qx.其中Px为X中的紧闭集,Qx为Y中的紧集.d.又假设存在X的非空紧集K,对每个X的有限子集N,存在X的紧子集LN,LNN,使得①对每个y∈Y,LN∩{x∈X,(x,y)∈Az,对所有z∈LN}是零调的;②对每个x∈LN\K,{y∈Y,(x,y)∈Az,对所有z∈LN}{y∈Y,(x,y)∈B};e.对每个x∈K,{y∈Y,(x,y)∈Az,对所有z∈X}=.则存在x0∈X,使得{x0}×YC.利用广义的Fan-Ha截口定理,容易将参考文献[1]中的所有结论推广到H-空间上.