In this paper, we construct the genuine-optimal circulant preconditioner for finitesection Wiener-Hopf equations. The genuine-optimal circulant preconditioner is defined as the minimizer of Hilbert-Schmidt norm over certain integral operators. We prove that the difference between the genuine-optimal circulant preconditioner and the original integral operator is the sum of a small norm operator and a finite rank operator. Thus, the preconditioned conjugate gradient (PCG) method, when applied to solve the preconditioned equations, converges superlinearly. Finally, we give an efficient algorithm for the solution of Wiener-Hopf equation discretized by high order quadrature rules.