A lattice Boltzmann equation model has been developed by using the equilibrium distribution function of the Maxwell-Boltzmann-like form, which is third order in fluid velocity uα. The criteria of energy conservation between the macroscopic physical quantities and the microscopic particles are introduced into the model, thus the thermal hydrodynamic equations containing the effect of buoyancy force can be recovered in terms of the Taylor and ChapmanEnskog asymptotic expansion methods. The two-dimensional thermal convection phenomena in a square cavity and between two concentric cylinders have been calculated by implementing a heat flux boundary condition. Both numerical results are in good agreement with the conventional numerical results.