We report on the theoretical study of the interaction of the quantum dot(QD)exciton with the photon waveguide models in a semiconductor microcavity. The lnAs/GaAs self-assembled QD exciton energies are calculated in a microcavity. The calculated results reveal that the electromagnetic field reduces the exciton energies in a semiconductor microcavity. The effect of the electromagnetic field decreases as the radius of the QD increases. Our calculated results are useful for designing and fabricating photoelectron devices.