作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
<正> 最值问题近年来成了初中数学竞赛命题的热点内容,这种题型涉及变量多,条件多,且新颖的形式,灵活多变的解法令人耳目一新.通过对二次三项式ax2+bx+c(a≠0)配方、变形,可以确定它的最值(最大值和最小值),对此,大家并不陌生,但对其它代数式最值的求解问题,不少同学往往感到棘手.其实,只要我们能够抓住题目的特征,充分利用已知条件,对代数式进行正确灵活的变形,问题也是不难解决的.不妨请看例题:
推荐文章
单峰函数最值定理的推广
驻点
极值
最大值和最小值
孤立点集
例谈椭圆最值的几种求法
椭圆
最值
求法
特征值法求解二次型的条件最值问题
二次型
条件最值
拉格朗日(Lagrange)乘数法
特征值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 变形是确定最值的关键
来源期刊 数理化学习:初中版 学科 教育
关键词 最值问题 初中 数学 竞赛题 题型 解法 代数式
年,卷(期) 2003,(6) 所属期刊栏目
研究方向 页码范围 28-29
页数 2页 分类号 G633.603
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴友智 江苏省盐城市马沟中学教科室 101 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最值问题
初中
数学
竞赛题
题型
解法
代数式
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数理化学习
月刊
2095-218X
23-1575/G4
哈尔滨市南岗区和兴路50号
14-188
出版文献量(篇)
8639
总下载数(次)
5
总被引数(次)
0
论文1v1指导