原文服务方: 信息与控制       
摘要:
本文将支持向量回归方法应用于非线性系统辨识问题.基于高斯支持向量回归及ε不敏感损失函数的基本思想,本文提出一个非线性系统辨识的新算法,并将其与用于系统辨识的径向基函数神经网络进行了比较.模拟实验表明,支持向量回归方法可以成为非线性系统辨识的有力工具.
推荐文章
基于支持向量机的非线性系统辨识研究
支持向量机
系统辨识
非线性
基于V-支持向量机与ε-支持向量机的非线性系统辨识
支持向量机
非线性系统
辨识
回归问题
基于模糊加权最小二乘支持向量回归的非线性系统建模方法
模糊加权机理
最小二乘支持向量回归
非线性统
建模方法
基于支持向量机的非线性系统辨识方法
支持向量机
回归
非线性系统
辨识
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量回归的非线性系统辨识
来源期刊 信息与控制 学科
关键词 支持向量回归 非线性系统辨识 贝叶斯证据框架
年,卷(期) 2003,(5) 所属期刊栏目 实际问题研讨
研究方向 页码范围 471-474
页数 4页 分类号 TP273|TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1002-0411.2003.05.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑南宁 西安交通大学人工智能与机器人研究所 188 3039 29.0 46.0
2 贾新春 西安交通大学人工智能与机器人研究所 12 483 9.0 12.0
3 张元林 西安交通大学人工智能与机器人研究所 8 191 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (14)
同被引文献  (14)
二级引证文献  (48)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2004(1)
  • 引证文献(1)
  • 二级引证文献(0)
2005(1)
  • 引证文献(1)
  • 二级引证文献(0)
2006(4)
  • 引证文献(3)
  • 二级引证文献(1)
2007(5)
  • 引证文献(1)
  • 二级引证文献(4)
2008(7)
  • 引证文献(1)
  • 二级引证文献(6)
2009(5)
  • 引证文献(2)
  • 二级引证文献(3)
2010(7)
  • 引证文献(2)
  • 二级引证文献(5)
2011(7)
  • 引证文献(0)
  • 二级引证文献(7)
2012(6)
  • 引证文献(2)
  • 二级引证文献(4)
2013(5)
  • 引证文献(1)
  • 二级引证文献(4)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(4)
  • 引证文献(0)
  • 二级引证文献(4)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
支持向量回归
非线性系统辨识
贝叶斯证据框架
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与控制
双月刊
1002-0411
21-1138/TP
大16开
1972-01-01
chi
出版文献量(篇)
2891
总下载数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
论文1v1指导