Based on the Finnis-Sinsclair (FS) many-body potential model, the melting process of a system, which consists of 500 Cu atoms, controlled by period boundary condition has been simulated. The means of pair correlation function, mean square displacement and Honeycutt-Anderson bonded pair have been used to characterize the melting behavior of Cu at different heating rates. The simulation indicates that melting point of metal Cu is 1444 K during a continuous heating process, and the calculated diffusion constant at the melting point is 4.31×10-9 m2/s. These results are better than those from the EAM method, showing that the FS potential model works well in some disordered systems.