Using a form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the nonholonomic Vacco dynamical system with variable mass is studied. The differential equations of motion of the systems are established. The definition and criterion of the form invariance of the system under special infinitesimal transformations are studied. The necessary and sufficient condition under which the form invariance is a Lie symmetry is given. The Hojman theorem is established. Finally an example is given to illustrate the application of the result.