基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Hyperspectral remote sensing provides high-resolution spectral data and the potential for remote discrimination between subtle differences in ground covers. However, the high-dimensional data space generated by the hyperspectral sensors creates a new challenge for conventional spectral data analysis techniques. A challenging problem in using hyperspectral data is to eliminate redundancy and preserve useful spectral information for applications. In this paper, a Fast feature extraction (FFE) method based on integer wavelet transform is proposed to extract useful features and reduce dimensionality of hyperspectral images. The FFE method can be directly used to extract useful features from spectral vector of each pixel resident in the hyperspectral images. The FFE method has two main merits: high computational efficiency and good ability to extract spectral features. In order to better testify the effectiveness and the performance of the proposed method, classification experiments of hyperspectral images are performed on two groups of AVIRIS (Airborne visible/infrared imaging spectrometer) data respectively. In addition, three existing methods for feature extraction of hyperspectral images, i.e. PCA, SPCT and Wavelet Transform, are performed on the same data for comparison with the proposed method. The experimental investigation shows that the efficiency of the FFE method for feature extraction outclasses those of the other three methods mentioned above.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Fast Feature Extraction Method Based on Integer Wavelet Transform for Hyperspectral Images
来源期刊 电子学报(英文版) 学科 工学
关键词 特征提取 整数小波变换 图像处理 超谱图像
年,卷(期) 2004,(3) 所属期刊栏目
研究方向 页码范围 496-500
页数 5页 分类号 TP391.41
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征提取
整数小波变换
图像处理
超谱图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国电子杂志(英文版)
季刊
1022-4653
N
北京165信箱
eng
出版文献量(篇)
1919
总下载数(次)
1
总被引数(次)
318
论文1v1指导