摘要:
首先讨论了Dirichlet空间上Toeplitz算子组Fredholm谱的表示,证明了:当φi∈H∞1(D)+C1()(i=1,2,...,n)时,(Tφ1,Tφ2,…,Tφn)的右Fredholm谱SP, re(Tφ1,Tφ2,…,Tφn)与Fredholm谱SP, e(Tφ1,Tφ2,…,Tφn)相同;当φi∈C1()(i=1,2,...,n)时,(Tφ1,Tφ2,…,Tφn)的左Fredholm谱 SP, le(Tφ1,Tφ2,…,Tφn)与Fredholm谱SP, e(Tφ1,Tφ2,…,Tφn)相同.然后讨论了Dirichlet空间上Toeplitz算子与算子组的凸性问题.证明了乘法算子Mz是非凸型的,这与Hardy, Bergman空间上所有乘法算子都是凸型算子不同.也证明了:T=(Tz,Tz2)不是联合凸型算子;若φi∈H∞1(D) (i=1,2,…, n),则W(Tφ1,Tφ2,…,Tφn)是凸集.本文还给出了一个一般性的结论:假定H为Hilbert空间,T∈B(H)为一个有界线性算子,当n=2m时有σ(Tm,Tn)={(λm,λn)λ∈σ(T)}.