We develop an approach to construct multiple soliton solutions of the (3+1)-dimensional nonlinear evolution equation. We take the (3+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation as an example. Using the extended homogeneous balance method, one can find a Backlünd transformation to decompose the (3+1)-dimensional NNV into a set of partial differential equations. Starting from these partial differential equations, some multiple soliton solutions for the (3+1)-dimensional NNV equation are obtained by introducing a class of formal solutions.