基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种在期望最大化(EM)算法框架下同时实现混合概率主成分分析(PPCA)降维和聚类的高光谱图像非监督分类方法.它根据不同类别应各有自己代表性的特征集,将通常意义下的特征抽取和模式分类合并在一步内完成,尽可能地保留了可分性;同时该方法具有概率模型的优点,更适合高维数据处理.采用仿真数据和真实数据进行的比较实验表明,该算法较一般不加区分地对所有原始数据进行PCA降维再分类的方法能得到更好的分类结果.
推荐文章
基于高光谱图像的分类方法研究
高光谱图像
支持向量机
人工神经元网络
决策树分类
最大似然分类法
K -均值聚类法
迭代自组织方法
一种基于HOG-PCA的高效图像分类方法
方向梯度直方图
主成分分析
最小二阶范数
图像分类
图像特征
基于混合Wishart模型的极化SAR图像非监督分类
极化SAR图像
非监督分类
混合Wishart模型
密度峰值
局部保护降维与高斯混合模型的高光谱图像分类
高斯混合模型
局部保护投影
局部保护非负矩阵分离
高光谱图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于混合概率PCA模型的高光谱图像非监督分类方法
来源期刊 国防科技大学学报 学科 工学
关键词 非监督分类 降维 混合概率主成分分析 期望最大化算法
年,卷(期) 2005,(2) 所属期刊栏目 电子工程·计算机工程
研究方向 页码范围 61-64
页数 4页 分类号 TN958
字数 3030字 语种 中文
DOI 10.3969/j.issn.1001-2486.2005.02.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 匡纲要 国防科技大学电子科学与工程学院 112 2486 24.0 46.0
2 郁文贤 国防科技大学电子科学与工程学院 70 948 17.0 26.0
3 吴昊 国防科技大学电子科学与工程学院 10 97 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (14)
同被引文献  (26)
二级引证文献  (30)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(1)
  • 引证文献(1)
  • 二级引证文献(0)
2007(2)
  • 引证文献(1)
  • 二级引证文献(1)
2008(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(4)
  • 引证文献(0)
  • 二级引证文献(4)
2010(4)
  • 引证文献(0)
  • 二级引证文献(4)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(3)
  • 引证文献(2)
  • 二级引证文献(1)
2015(3)
  • 引证文献(0)
  • 二级引证文献(3)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(6)
  • 引证文献(2)
  • 二级引证文献(4)
2019(5)
  • 引证文献(1)
  • 二级引证文献(4)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
非监督分类
降维
混合概率主成分分析
期望最大化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国防科技大学学报
双月刊
1001-2486
43-1067/T
大16开
湖南省长沙市开福区德雅路109号
42-98
1956
chi
出版文献量(篇)
3593
总下载数(次)
5
总被引数(次)
31889
论文1v1指导