原文服务方: 现代电子技术       
摘要:
提出一种基于图像分割和LSSVM的高光谱图像分类方法,将空谱信息结合起来进行高光谱图像的分类。首先利用均值漂移算法对高光谱图像进行分割,然后对每一块分割区域数据进行降维并且对降维后的数据LSSVM分类,最后用最大投票方法融合分割图和分类得到最终的分类结果。该文分类方法先对分割后的区域求出相似性矩阵并训练新样本集求出低秩系数矩阵,由相似性矩阵和低秩系数矩阵构造特征值方程求解出降维矩阵,然后利用混合核LSSVM对降维后的数据进行分类。实验结果表明,提出的基于图像分割和LSSVM的高光谱图像分类方法有效提高了高光谱图像的分类精度。
推荐文章
基于高光谱图像的分类方法研究
高光谱图像
支持向量机
人工神经元网络
决策树分类
最大似然分类法
K -均值聚类法
迭代自组织方法
基于降维Gabor特征和决策融合的高光谱图像分类
高光谱图像
分类
Gabor特征
高斯混合模型
决策融合
PCA投影
基于DE-GEP的高光谱遥感图像分类
遥感图像
演化算法
波段选择
分类
基于DS聚类的高光谱图像集成分类算法
优势集
聚类
集成
支持向量机
高光谱图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图像分割和LSSVM的高光谱图像分类
来源期刊 现代电子技术 学科
关键词 高光谱图像分类 图像分割 LSSVM 数据降维
年,卷(期) 2016,(24) 所属期刊栏目 计算机应用技术
研究方向 页码范围 14-17,21
页数 5页 分类号 TN911.73-34|TP751.1
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2016.24.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 楚恒 重庆邮电大学通信与信息工程学院 15 22 3.0 3.0
5 晁拴社 重庆邮电大学通信与信息工程学院 7 13 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (141)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像分类
图像分割
LSSVM
数据降维
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导