原文服务方: 湖南理工学院学报(自然科学版)       
摘要:
高光谱图像(HSI)具有高维度的光谱波段信息,但也包含许多冗余光谱波段.在进行高光谱图像分类时,不同波段对分类任务的贡献存在差异性.为了高效利用光谱波段中的特征信息,提出一种新的编解码波段加权网络(EBW).该网络利用注意机制,根据不同波段对分类性能的贡献自适应地进行波段加权,从而提高输入数据中光谱信息的有效性.在EBW中,首先获取输入HSI的光谱波段信息,再利用自编码器提取的波段相关性和深度特征生成波段权重;然后对输入HSI的光谱波段进行加权;最后将加权后的图片输入到分类网络中得出预测结果.在PaviaU和Salinas数据集上的实验结果表明,与现有基于深度学习的加权方法相比,该方法具有更好的分类性能.
推荐文章
基于加权K近邻和卷积神经网络的高光谱图像分类
高光谱图像分类
K近邻
卷积神经网络
基于高光谱图像的分类方法研究
高光谱图像
支持向量机
人工神经元网络
决策树分类
最大似然分类法
K -均值聚类法
迭代自组织方法
基于栈式自编码神经网络对高光谱遥感图像分类研究
栈式自编码神经网络
高光谱图像
光谱特征
微调
基于波段分组的高光谱图像无损压缩
高光谱图像
无损压缩
波段分组
波段排序
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自编码的高光谱图像波段加权分类网络研究
来源期刊 湖南理工学院学报(自然科学版) 学科
关键词 高光谱图像分类 波段加权 注意机制 卷积神经网络 深度学习
年,卷(期) 2021,(1) 所属期刊栏目 工程技术
研究方向 页码范围 34-39
页数 6页 分类号 TP391.9
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (1)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(14)
  • 参考文献(0)
  • 二级参考文献(14)
2018(14)
  • 参考文献(0)
  • 二级参考文献(14)
2019(5)
  • 参考文献(1)
  • 二级参考文献(4)
2020(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像分类
波段加权
注意机制
卷积神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南理工学院学报(自然科学版)
季刊
1672-5298
43-1421/N
大16开
1988-01-01
chi
出版文献量(篇)
2108
总下载数(次)
0
总被引数(次)
5747
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导