基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Q学习算法是一种最受欢迎的模型无关强化学习算法.本文通过对Q学习算法进行合适的扩充,提出了一种适合于多agent协作团队的共享经验元组的多agent协同强化学习算法,其中采用一种新的状态行为的知识表示方法使得状态行为空间得到缩减,采用相似性变换和经验元组的共享使得学习的效率得到提高.最后将该算法应用于猎人捕物问题域.实验结果表明该算法能够加快多个猎人合作抓捕猎物的进程,有利于协作任务的成功执行,并能提高多agent协作团队的协作效率,因此该算法是有效的.
推荐文章
一种基于案例推理的多agent强化学习方法研究
多agent强化学习
Q学习
策略再用
基于案例的推理
追捕问题
多agent协同强化学习算法SE-MACOL及其应用
多agent学习
强化学习
Q学习
状态行为空间
协作团队
利用聚类分析法改进的多Agent协作强化学习方法
多agent协作
强化学习
聚类分析
Friend-or-Foe
Q-学习
共享经验的多主体强化学习研究
合作多主体
强化学习
Q学习算法
状态空间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种共享经验元组的多agent协同强化学习算法
来源期刊 模式识别与人工智能 学科 工学
关键词 多agent学习 强化学习 Q学习 状态行为空间 协作团队
年,卷(期) 2005,(2) 所属期刊栏目 研究与应用
研究方向 页码范围 234-239
页数 6页 分类号 TP391
字数 5827字 语种 中文
DOI 10.3969/j.issn.1003-6059.2005.02.018
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (1)
共引文献  (26)
参考文献  (3)
节点文献
引证文献  (11)
同被引文献  (5)
二级引证文献  (14)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(1)
  • 引证文献(1)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(0)
  • 二级引证文献(1)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(3)
  • 引证文献(2)
  • 二级引证文献(1)
2012(4)
  • 引证文献(2)
  • 二级引证文献(2)
2013(5)
  • 引证文献(1)
  • 二级引证文献(4)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
多agent学习
强化学习
Q学习
状态行为空间
协作团队
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
论文1v1指导