基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着信息技术的快速发展,特别是计算机技术的不断普及,使得“数据丰富而信息贫乏”这对矛盾显得日益突出.数据挖掘技术正是应了这一需求而结合了数理统计学、人工智能、神经网络和信息枝术等多学科而出现的一项新技术,且在广大应用领域产生了和正在产生着巨大的作用:因特网在目前为一个分布式的、全球的、巨大的信息服务中心,每时每刻有海量数据产生于此.这无疑对数据挖掘这门新兴的学科提出了巨大的挑战.Web不仅由页面组成,而且还包含了由一个页面指向另一个页面的链接结构和用户使用记录.而大量的这些Web内容、链接结构和用户使用记录隐含了人们使用web页面行为习惯、页面质量、用户类别等大量有趣信息.本文就Web挖掘技术的web内容挖掘、web结构挖掘、Web使用记录挖掘作了深入、详细的探讨.
推荐文章
数据挖掘在WEB中的应用
数据挖掘
KDD
WEB
Web数据挖掘技术的研究
数据挖掘
Web数据挖掘
XML
Web挖掘技术及其应用研究
搜索
数据库
数据挖掘
Internet
电子商务
XML在Web数据挖掘中的应用
数据挖掘
Web数据挖掘
XML
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 数据挖掘技术在Web中的应用研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 数据挖掘 最大向前路径 分类 聚类
年,卷(期) 2006,(1) 所属期刊栏目
研究方向 页码范围 3-4
页数 9页 分类号 TP311
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李向伟 西北师范大学数学与信息科学学院 9 36 4.0 5.0
2 仇德成 西北师范大学数学与信息科学学院 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(3)
  • 参考文献(3)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据挖掘
最大向前路径
分类
聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
论文1v1指导