基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在实时平台上,高斯混合模型(GMM)具有计算有效性和易于实现的优点.最大似然规则中,模型参数不断更新,但由于爬山特征,任意的原始模型参数估计通常将导致局部最优;遗传算法(GA)适于求解复杂组合优化问题及非线性函数优化.提出了基于说话人识别的可以解决GMM局部最优问题的GMM/GA新算法,实验结果表明,提出的GMM/GA新算法比纯粹的GMM算法能获得更优的效果.
推荐文章
基于LSP线谱对参数的GMM说话人识别系统
高斯混合模型
线谱对
说话人识别
噪声环境中基于GMM汉语说话人识别
语音增强
Weiner滤波法
说话人识别
改进的说话人聚类初始化和GMM的多说话人识别
多说话人识别
改进的聚类初始化
高斯混合模型
平均类纯度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于说话人识别的GMM/GA算法
来源期刊 电声技术 学科 工学
关键词 高斯混合模型 最大期望算法 遗传算法 适应值
年,卷(期) 2006,(8) 所属期刊栏目 语音技术
研究方向 页码范围 43-45,49
页数 4页 分类号 TN91
字数 4055字 语种 中文
DOI 10.3969/j.issn.1002-8684.2006.08.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 尹俊勋 华南理工大学电子与信息学院 118 876 12.0 25.0
2 邱政权 华南理工大学电子与信息学院 8 26 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (26)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (1)
二级引证文献  (1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
高斯混合模型
最大期望算法
遗传算法
适应值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电声技术
月刊
1002-8684
11-2122/TN
大16开
北京市朝阳区酒仙桥北路乙7号
2-355
1977
chi
出版文献量(篇)
6327
总下载数(次)
24
总被引数(次)
16603
论文1v1指导